
#cs-101 #radiance-fields #3d-deep-learning

Why are NeRFs bad? Stochastic sampling

Why is GS good?

Representing Gaussians for differentiability

Define a Gaussian with covariance Σ in world space centered at μ as

G(x) = e− 1
2 (x)TΣ−1(x)

Ideally, just optimize Σ to get 3-D Gaussians representing the RF. But this might break
positive semi-definiteness and create invalid covariance matrices.

But we know the covariance matrix is symmetric! So it admits a spectral decomposition

Σ = QΛQT

Where

is costly
results in noise

Random initialization of Gaussians yields high quality immediately
Pipeline: same inputs as NeRF (images -> SfM), initialize Gaussians at each pi

from SfM

3-D Gaussians are a good representation
Differentiable

Easy to optimize properties

Easy to rasterize with 2-D projection + alpha compositing, as in NeRF

About 1-5 million sufficient

Easy rendering on GPU
Anistropic splatting is easy because of sorting and alpha blending

The point clouds are anistropic = points are not spheres, they're Gaussians
that can be stretched into ellipsoids

For physical validity, we define scaling and rotation matrices S and R which we can optimize

Σ = RSSTRT

The paper explicitly derives gradients of and with respect to the projection (as defined
below)

Projecting Gaussians to 2-D space

The covariance matrix in camera coordinates (2-D space) will be

Σ = ΣT T

Optimizing 3-D Gaussians

Apply differentiation of existing Gaussian parameters + adaptive control

For each Gaussian, we ned to optimize

The orthogonal matrix Q's columns are the eigenvectors of the covariance matrix, which
represent the principal axes of the 3-D ellipsoid

Λ is a diagonal scaling matrix

We want Λ to only have positive scaling values, so take the square of the values in the
scaling matrix S

Rotation matrix R = Q
Store R as a (unit) quaternion and S as a 3-D scaling vector S = ()

1. If we apply a transformation to x to get x the new covariance matrix is ΣT : covariance
matrix of a random variable under linear transformations

2. Still in 3-D space, project it to 2-D coordinates. So apply the Jacobian (2 x 3 matrix) of
the affine (=local linear) approximation of the projective transformation
Equivalent to ()Σ()T = ΣT T

1. Σ (as represented by and)
2. Position p

3. Opacity
4. Spherical harmonic coefficients for the color of each Gaussian

Implementation details

Adaptive control

SfM gives us a sparse set of Gaussians, we need to densify. So after initial warmup, every
100 iterations:

How does densification work?
Large gradients (bad reconstructions) emerge in view space in 2 kinds of regions:

So:

, R need to be physical
Set = sigmoid of learnable value and cap it to 1)

Exponentiate the scale to keep positive scales
Normalize for rotations

Exponential decay scheduling for learning rate of p
Combined L1 and reconstruction loss

1. Densify
2. Remove Gaussians with a very low

1. Under-reconstruction (missing features)
2. Over-reconstruction (Gaussian covers a large area)

1. Create a copy of Gaussians in under-reconstructed regions and move it in the direction
of positional gradient

2. Densify Gaussians which have an average gradient above some threshold = 2

Split into 2 new Gaussians
Sample positions from PDF

Hacks for experimental issues:

For stability: Start in 4x smaller image resolution, upsample twice after 250 and 500
iterations

Color with SH:

Differentiable rasterization

Split the screen into 16x16 tiles

Reduce scale factor by = 1

Gaussians close to camera get stuck (results in a spurious increase in Gaussian density)
set near 0 every 3000 iterations, important Gaussians will re-gain gradients,
unimportant ones will get culled

Periodically remove Gaussians very large in worldspace that have a big footprint in view
space

Color is view-dependent - can't just store RGB scalars

Store a set of Spherical harmonic coefficients per color channel
To get the RGB pixel given the viewing angle, just take the linear combination of
harmonic basic functions for that angle with learned coefficients

0th order = sphere represent diffuse color, higher order represent light wrt to surface

Doesn't make sense to try to learn higher order before lower order. So introduce one
band of SH every 1000 iterations until all bands are represented

Cull 3-D gaussians against view frustum and each tile
Reject Gaussians close to near place + far outside frustum

For a given Gaussian, 'instantiate' it for each tile

We have an unordered set of Gaussians, now assign each Gaussian a key so we can use
radix sort
Key=

After sorting, we get a list for each tile by getting the first and last depth sorted entry in that
tile

Launch one thread block per tile for rasterization

Confusing term but used in GPU stuff

Tile ID for that Gaussian (high bits)
View space depth (low bits)

Load packets of Gaussians into shared memory

For each pixel, accumulate color and by traversing the list
Stop the thread when we reach a target saturation from the pixel
Stop the entire thread when all pixels have saturated

Gradients:

Traverse the lists back to front
Start from last point that affected any pixel

Each pixel will only start overlap testing and processing of points if their depth is
lower than or equal to the depth of the last point that contributed to its color
during the forward pass.

