#cs-101 #radiance-fields #3d-deep-learning

Camera
Projection

LI
.o — | Initialization

'Rl
.

Differentiable e

Image
Tile Rasterizer +— 8

|
Pt i
/™

\

Adaptive
Density Control ‘ —p Operation Flow ~ — Gradient Flow

SfM Points 3D Gaussians

Why are NeRFs bad? Stochastic sampling

is costly
results in noise

Why is GS good?

Random initialization of Gaussians yields high quality immediately
Pipeline: same inputs as NeRF (images -> SflM), initialize Gaussians at each p;
from SfM
3-D Gaussians are a good representation
Differentiable
Easy to optimize properties
Easy to rasterize with 2-D projection + alpha compositing, as in NeRF

About 1-5 million sufficient

Easy rendering on GPU
Anistropic splatting is easy because of sorting and alpha blending

The point clouds are anistropic = points are not spheres, they're Gaussians
that can be stretched into ellipsoids

Representing Gaussians for differentiability
Define a Gaussian with covariance X in world space centered at i as
G(w) — efé(x)Tzil(w)

Ideally, just optimize X to get 3-D Gaussians representing the RF. But this might break
positive semi-definiteness and create invalid covariance matrices.

But we know the covariance matrix is symmetric! So it admits a spectral decomposition

Y = QAQT
Where

The orthogonal matrix Q's columns are the eigenvectors of the covariance matrix, which
represent the principal axes of the 3-D ellipsoid

A is a diagonal scaling matrix

For physical validity, we define scaling and rotation matrices S and R which we can optimize
> = RSSTRT

We want A to only have positive scaling values, so take the square of the values in the
scaling matrix S

Rotation matrix R = Q
Store R as a (unit) quaternion and S as a 3-D scaling vector S = ()

The paper explicitly derives gradients of and with respect to the projection (as defined
below)

Projecting Gaussians to 2-D space
The covariance matrix in camera coordinates (2-D space) will be
»=xT"

If we apply a transformation to z to get = the new covariance matrix is 7 covariance
matrix of a random variable under linear transformations

Still in 3-D space, project it to 2-D coordinates. So apply the Jacobian (2 x 3 matrix) of
the affine (=local linear) approximation of the projective transformation
Equivalent to ()2()? = 217

Optimizing 3-D Gaussians
Apply differentiation of existing Gaussian parameters + adaptive control
For each Gaussian, we ned to optimize

> (as represented by and)

Position p

Opacity

Spherical harmonic coefficients for the color of each Gaussian

Camera

— >
/V Projection \
-9

Differentiable e

g . Image
Tile Rasterizer

R

Adaptive

3D Gaussians Density C I
ensity Contro —> Operation Flow Gradient Flow

Implementation details

, R need to be physical
Set = sigmoid of learnable value and cap it to 1)
Exponentiate the scale to keep positive scales
Normalize for rotations

Exponential decay scheduling for learning rate of p

Combined L1 and reconstruction loss

L=01-1)L1+ALpssim

Adaptive control

SfM gives us a sparse set of Gaussians, we need to densify. So after initial warmup, every
100 iterations:

Densify
Remove Gaussians with a very low

How does densification work?
Large gradients (bad reconstructions) emerge in view space in 2 kinds of regions:

Under-reconstruction (missing features)
Over-reconstruction (Gaussian covers a large area)

So:

Create a copy of Gaussians in under-reconstructed regions and move it in the direction
of positional gradient
Densify Gaussians which have an average gradient above some threshold = 2
Split into 2 new Gaussians
Sample positions from PDF

Reduce scale factorby =1

_> ® @ @
Clone Optimization
Continues
‘P_: ﬁptmzat(m
Continues

Hacks for experimental issues:

Under-
Reconstruction

Over-
Reconstruction

Gaussians close to camera get stuck (results in a spurious increase in Gaussian density)
set near 0 every 3000 iterations, important Gaussians will re-gain gradients,
unimportant ones will get culled

Periodically remove Gaussians very large in worldspace that have a big footprint in view
space

For stability: Start in 4x smaller image resolution, upsample twice after 250 and 500
iterations

Color with SH:

Color is view-dependent - can't just store RGB scalars

Store a set of Spherical harmonic coefficients per color channel

To get the RGB pixel given the viewing angle, just take the linear combination of
harmonic basic functions for that angle with learned coefficients

Oth order = sphere represent diffuse color, higher order represent light wrt to surface

Doesn't make sense to try to learn higher order before lower order. So introduce one
band of SH every 1000 iterations until all bands are represented

Differentiable rasterization
Split the screen into 16x16 tiles

Cull 3-D gaussians against view frustum and each tile
Reject Gaussians close to near place + far outside frustum

For a given Gaussian, 'instantiate' it for each tile
Confusing term but used in GPU stuff

We have an unordered set of Gaussians, now assign each Gaussian a key so we can use
radix sort
Key=

Tile ID for that Gaussian (high bits)
View space depth (low bits)

After sorting, we get a list for each tile by getting the first and last depth sorted entry in that
tile
Launch one thread block per tile for rasterization

Load packets of Gaussians into shared memory

For each pixel, accumulate color and by traversing the list

Stop the thread when we reach a target saturation from the pixel
Stop the entire thread when all pixels have saturated

Algorithm 2 GPU software rasterization of 3D Gaussians
w, h: width and height of the image to rasterize

M, S: Gaussian means and covariances in world space

C, A: Gaussian colors and opacities

V: view configuration of current camera

function RasTeERrIZE(W, h, M, S, C, A, V)

CullGaussian(p, V) > Frustum Culling
M’,S’ « ScreenspaceGaussians(M, S, V) > Transform
T « CreateTiles(w, h)

L, K < DuplicateWithKeys(M’, T) > Indices and Keys
SortByKeys(K, L) > Globally Sort
R « IdentifyTileRanges(T, K)

I—0 > Init Canvas
for all Tiles t in I do

for all Pixels i in ¢t do
r « GetTileRange(R, t)
I[i] « BlendInOrder(i, L, r, K, M’, S’, C, A)
end for
end for
return
end function

Gradients:

Traverse the lists back to front
Start from last point that affected any pixel

Each pixel will only start overlap testing and processing of points if their depth is
lower than or equal to the depth of the last point that contributed to its color
during the forward pass.

Numerical stability. During the backward pass, we reconstruct
the intermediate opacity values needed for gradient computation by
repeatedly dividing the accumulated opacity from the forward pass
by each Gaussian’s a. Implemented naively, this process is prone to
numerical instabilities (e.g., division by 0). To address this, both in
the forward and backward pass, we skip any blending updates with
a < € (we choose € as %) and also clamp a with 0.99 from above.
Finally, before a Gaussian is included in the forward rasterization
pass, we compute the accumulated opacity if we were to include it
and stop front-to-back blending before it can exceed 0.9999.

